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ABSTRACT: A key step in Howden’s method (5] for algebraic program testing

requires checking the algebraic identity of inultinomials. Howden’s solution I
requires evaluations in at least 2m points for m—ary multinomials. This

note presents a probabilistic solution which achieves small probability of

error on 30 points.
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Until very recently, research in software reliability has divided quite

neatly into two —— usually warring —— camps: methodologies with a mathematical

basis and methodologies without such a basis. In the former view, “reliability”

is identified with “correctness” and the principle tool has been formal and

informal verification [11. In the latter view, “reliability ” is taken to mean

the ability to meet overall functional goals to within some predefined limits

[2,3]. We have argued in [4] that the latter view holds a great deal of promise

for further development at both the practical and analytical levels. Howden [5]

proposes a first step in this direction by describing a method for “testing” a

certain restricted class of programs whose behavior can —— in a sense Howden

makes precise —— be algebraicized. In this way, “testing” a program is reduced

to an equivalence test , the major components of which become

(1) a combinatorial identification of “equivalent” structures;

(ii) an algebraic test

f
~~~~

f

where f
1, 

i = 1, 2 is a multivariable polynomial (multinomial) of degree

specified by the program being considered .

In arriving at a method for exact solution of (ii), Howden derives an algorithm

which requires evaluation of multinomials f(x1, x )  of maximal degree d at

0( d + 1) m points. For large valUes of m (a typ ical case for realistic examples),

this method becomes prohibitively expensive.

Since , however , a test for reliability rather than a certification of correctness

is desired , a natural question is whether or not Howden ’s method can be improved by

settling for less than an exact solution to (ii).

.
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We are inspired by Rabin [61 and , less directly, by the many successes

of Erd~3s and Spencer (7] to attempt a probabilistic solution to (ii). Using

these methods , we show that (ii) can be tested with probability of error C

with only O(g(C)) evaluations of inultinomials, where g is a slowly growing

function of only C. In particular , 30 or so evaluations should give sufficiently

small probability of error for most practical situations . The remainder of this

note is devoted to proving this result.

Let us denote by P
+0

(m ,d) the class of multinomials, x )  ~ 0

(over some arbitrary but fixed integral domain) whose degree does not exceed d > 0.

We define

P(m,d ,r) = mm Prob {l < < r , f(x1, ‘ 
~~ + 0)

f C P~0
(m ,d)

We think of P(m,d ,r) as the minimal relative frequency with which witnesses

to the non-nullity of a multinomial of the appropriate kind can occur in the

choosen interval. Notice , in particular , that since a polynomial of degree d has

at most d roots (ignoring multiplicity) , the largest probability of finding a

root must be at least the probability of finding a root by randomly sampling in

the interval 1 
~ 

< r; thus

P( l ,d ,r) > 1 — d/r .

Now, consider some

•~~• ~ x ,y) ~ 0

of degree at most d. But there are then multinomials {g
1
) 
~ < d 

not all ~ 0,

I
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such that d

, x ,y) g~ (x~ , ... , x ) y t

i .,0

Let us suppose that c P
+O

(m ,d) .  Thus

Prob {l < < r, f (x 1, ... 
‘ 

~m ’~~ + 0)

> Prob ~g~ (x
1. ‘ 

~~ 
+ 0 and y is not a root}

> P(m,d ,r)(]. — d/r )

Continuing inductively , we obtain

• P(rn,d,r) > (1 — d/r)tm (1)

But 

m ÷
m (h 1

~~~ 
~im
[i

+
i(

~~~
)]m

=~~~~~. (2)

- 
1 Combining (1) and (2) , we have for large m, r = dm ,

P(in,d ,dm) > e~~

Thus, with t evaluations of f for independent choices of points from the rn—cube

• with sides r dm , the probability of missing a witness to the non—nullity of

f(x , ..., x ) is at most1 in 
— l t(1— e  )

— 
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Table 1 shows the probable error in testing f 0 by t evaluations of

f at randomly chosen points for some typical values of d,m ,r,t.

(1 — P(m,d ,r ) ] t

dm r tolO t20 t30 t50 t lOO

10 10 1.0 x io 2 1.0 x 10~~ 1.0 x io 6 1.1 x iø~~° 1.2 x io_20

20 10 0.23 5~5 ‘< io 2 
1.3 x iø 2 70 x 4.8 X l0~~

50 10 0.93 0.87 0.82 0.71 0.51

102 10 1.0 1.0 1.0 1.0 1.0

10 102 6.0 x <l0 20 <10 20 <io
_20 

<i& 20

20 io2 3.9 x io 8 1.5 x io~~~ <1o 2° <io_20

50 io2 8.9 x 10~~ 7 .9 x 10~~ 7.0 x lO
_ 13 <io~~° <io .20

l0~ io2 1.0 1.0 1.0 1.0 1.0

10 <lO_20 <io~~° <lo_20 <j ~~
2O

20 ~~~ 9.3 x <j~~~
20 <io 20 <icr 2° <io_20

50 l0~ 7.6 x <io 20 <io_2o <io _20 <io_20

Table 1. Probable Error in Testing f (x 1, ~• •  x )  0

(degree < d) by t random evaluations in {1, ... , r}

Not ice that for din = r , t 30, this is already < ~~~~~
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